Oscillation and nonoscillation of solutions of second order linear dynamic equations with integrable coefficients on time scales
نویسندگان
چکیده
We obtain Willett-Wong-type oscillation and nonoscillation theorems for second order linear dynamic equations with integrable coefficients on a time scale. The results obtained extend and are motivated by oscillation and nonoscillation results due to Willett [20] and Wong [21] for the second order linear differential equation. As applications of the new results obtained, we give the complete classification of oscillation and nonoscillation for the difference equations ∆x(n) + b (−1) tc x(n + 1) = 0 and ∆x(n) + » a tc+1 + b (−1) tc – x(n + 1) = 0, for t ∈ N, a, b, c ∈ R. We also improve a nonoscillation result of Mingarelli [17] and extend an oscillation result of Del Medico and Kong [7].
منابع مشابه
Oscillation and nonoscillation of solutions of second order linear differential equations with integrable coefficients
where a(t) is a locally integrable function of /. We call equation (1) oscillatory if all solutions of (1) have arbitrarily large zeros on [0, oo), otherwise, we say equation (1) is nonoscillatory. As a consequence of Sturm's Separation Theorem [21], if one of the solutions of (1) is oscillatory, then all of them are. The same is true for the nonoscillation of (1). The literature on second orde...
متن کاملHalf-Linear Dynamic Equations
Abstract. We survey half-linear dynamic equations on time scales. These contain the well-known half-linear differential and half-linear difference equations as special cases, but also other kinds of half-linear equations. Special cases of half-linear equations are the well-studied linear equations of second order. We discuss existence and uniqueness of solutions of corresponding initial value p...
متن کاملHyers-Ulam Stability of Non-Linear Volterra Integro-Delay Dynamic System with Fractional Integrable Impulses on Time Scales
This manuscript presents Hyers-Ulam stability and Hyers--Ulam--Rassias stability results of non-linear Volterra integro--delay dynamic system on time scales with fractional integrable impulses. Picard fixed point theorem is used for obtaining existence and uniqueness of solutions. By means of abstract Gr"{o}nwall lemma, Gr"{o}nwall's inequality on time scales, we establish Hyers-Ulam stabi...
متن کاملNonoscillation and oscillation of second-order impulsive differential equations with periodic coefficients
In this paper we give a nonoscillation criterion for half-linear equations with periodic coefficients under fixed moments of impulse actions. The method is based on existence of positive solutions of the related Riccati equation and a recently obtained comparison principle. In the special case when the equation becomes impulsive Hill equation new oscillation criteria are also obtained.
متن کاملOn oscillation and nonoscillation of second-order dynamic equations
New oscillation and nonoscillation criteria are established for second order linear equations with damping and forcing terms. Examples are given to illustrate the results.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied Mathematics and Computation
دوره 215 شماره
صفحات -
تاریخ انتشار 2009